Environmental Galenics: large-scale fortification of extant microbiomes with engineered bioremediation agents

de Lorenzo Víctor (2022) Environmental Galenics: large-scale fortification of extant microbiomes with engineered bioremediation agentsPhil. Trans. R. Soc. B3772021039520210395 http://doi.org/10.1098/rstb.2021.0395

Contemporary synthetic biology-based biotechnologies are generating tools and strategies for reprogramming genomes for specific purposes, including improvement and/or creation of microbial processes for tackling climate change. While such activities typically work well at a laboratory or bioreactor scale, the challenge of their extensive delivery to multiple spatio-temporal dimensions has hardly been tackled thus far. This state of affairs creates a research niche for what could be called Environmental Galenics (EG), i.e. the science and technology of releasing designed biological agents into deteriorated ecosystems for the sake of their safe and effective recovery. Such endeavour asks not just for an optimal performance of the biological activity at stake, but also the material form and formulation of the agents, their propagation and their interplay with the physico-chemical scenario where they are expected to perform. EG also encompasses adopting available physical carriers of microorganisms and channels of horizontal gene transfer as potential paths for spreading beneficial activities through environmental microbiomes. While some of these propositions may sound unsettling to anti-genetically modified organisms sensitivities, they may also fall under the tag of TINA (there is no alternative) technologies in the cases where a mere reduction of emissions will not help the revitalization of irreversibly lost ecosystems.

High-Efficiency Multi-site Genomic Editing of Pseudomonas putida through thermoinducible ssDNA Recombineering

Aparicio, T., Nyerges, Martínez-García E. and de Lorenzo, V. (2020) High-efficiency multi-site genomic editing (HEMSE) of Pseudomonas putida through thermoinducible ssDNA recombineering. iScience   DOI: 10.1016/j.isci.2020.100946 (In Press)

Single-stranded DNA recombineering is a useful tool for genome editing used mainly in enterobacteria strains such as E.coli. It is based on the presence of synthetic DNA strains and a DNA exchange mechanism called the Red system. Specifically, this system relies on one of its components, the Red-β protein – a recombinase protein that is able to include the synthetic DNA fragments into the DNA replication process and therefore change the DNA sequence. However, the implementation of this system in other non-enteric species is limited by the efficiency of the Red recombinase (which lowers drastically) and the action of repair systems that fix targeted mutations.

In this paper, we have developed a new method to use the Red recombineering system in Pseudomonas putida, a valuable non-enteric bacteria in industrial and biotechnological research. Our approach combines the expression of a Red-like protein and a reversible system to inhibit mismatch repair during a limited time. By applying multiple cycles of recombinase production and DNA transformation, high-fidelity recombination frequencies could be achieved. Thus, this method opens a new genome editing possibility for this bacteria and expands the single-stranded DNA recombineering system functionalities to other species.

An autonomous chemical robot discovers the rules of inorganic coordination chemistry without prior knowledge

Porwol, L., D. Kowalski, A. Henson, D. -L. Long, N. L. Bell, L. Cronin  (2020) An autonomous chemical robot discovers the rules of supramolecular chemistry without prior knowledge, Angew Chem Int Ed https://doi.org/10.1002/anie.202000329

Finding new chemical assemblies is challenging due to the vast range of combinations possible and the difficulty of their prediction. Moreover, it is common to perform these reactions with an outcome in mind or using sub-optimal conditions, limiting the extent of discovery. Attempts to explore the chemical space including optimal and non-optimal synthesis conditions to look for unpredicted outcomes carry a high cost in terms of time and resources. However, automation tools and algorithms can overcome these limitations.

In this paper, we have developed an autonomous discovery platform that is able to identify ligands and perform binding reactions faster than previous approaches (2h vs. 20h). This robot has been tested in a chemical space of over 109, and has already made relevant discoveries including a range of new molecules in the family of 1-benzyl-(1,2,3-triazol-4-yl)-N-alkyl-(2-pyridinemethanimine) ligands and four new complexes of Fe and Co.

Synthetic Biology for Terraformation Lessons from Mars, Earth, and the Microbiome

Conde-Pueyo, N., Vidiella, B.,  Sardanyés J., Berdugo, M. Maestre, F., de Lorenzo V. and Sole, R. (2020) Synthetic biology for terraformation: lessons from Mars, Earth and the microbiome  Life 10: 14 (2020)

Synthetic biology has been widely used in different types of organisms, usually with some industrial application in mind. However, it has the potential of working in a much larger scale. Here, we discuss the possible applications of synthetic biology in the field of modifying ecosystems and ecological communities. The tools that synthetic biology provides could be used to prevent the loss of endangered areas or to minimize the consequences of climate change.

The core idea is the engineering of designed organisms able to counterbalance the impact of global warming and its associated tipping points. These organisms would act on key processes such as the reduction of greenhouse gases, removal of undesirable waste or ensuring habitat persistence. This concept is referred to as terraformation, and it is suggested here to include all scales for context: from the microbiome to the biosphere. Terraformation could not only be applied on Earth, but also to other planets such as Mars, where early studies have already been performed.

Xenobiology: A Journey towards Parallel Life Forms

Budisa N., Kubyshkin V., Schmidt M. (2020) Xenobiology: a journey towards parallel life forms. ChemBioChem doi.org/10.1002/cbic.202000141

There is a vast range of life forms living in our planet, from the most delicate species to extremophiles living in the deepest points of the ocean or above the atmosphere. But despite this tremendous diversity, all life forms share a very similar information-processing scheme and chemistry.

Xenobiology is the science that studies other possible basic workings of life, as in other ways to process information and use matter and energy. In this field, researchers aim to design or describe novel biological procedures or molecules that could have existed naturally but have not yet been found. In this research, we discuss the basics of xenobiology and how it could lead to the creation of different life forms, taxonomies or even ecosystems.


  • Pei, L., Garfinkel, M. & Schmidt, M. Bottlenecks and opportunities for synthetic biology biosafety standards. Nature Communications 13 (2022).

  • Vidiella, B. and Solé, R. 2022. Ecological firewalls for synthetic biology. Iscience, 25(7), p.104658. https://www.sciencedirect.com/science/article/pii/S2589004222009300

  • Solé, R. and Levin, S. 2022. Ecological complexity and the biosphere: the next 30 years. Philosophical Transactions of the Royal Society B, 377(1857), p.20210376. https://royalsocietypublishing.org/doi/full/10.1098/rstb.2021.0376

  • Maull, V. and Solé, R. 2022. Network-level containment of single-species bioengineering. Philosophical Transactions of the Royal Society B, 377(1857), p.20210396. https://royalsocietypublishing.org/doi/abs/10.1098/rstb.2021.0396

  • Berdugo, M., Vidiella, B., Solé, R.V. and Maestre, F.T. 2022. Ecological mechanisms underlying aridity thresholds in global drylands. Functional Ecology, 36(1), pp.4-23.  https://besjournals.onlinelibrary.wiley.com/doi/epdf/10.1111/1365-2435.13962

  • Rohrbach, S., M. Siauciulis, G. Chisholm, P. –A. Privin, M. Saleeb, S. H. M. Mehr, E. Trushina, A. I. Leonov, G. Keenan, A. Khan, A. Hammer, L. Cronin. ‘Digitization and validation of a chemical synthesis literature database in the ChemPU’, Science, 2022, 377, 172-180, https://10.1126/science.abo0058.

  • Aparicio, T., Silbert, J., Cepeda, S. and de Lorenzo, V.  Propagation of recombinant genes through complex microbiomes with synthetic mini-RP4 plasmid vectors. BioDesign Res 2022, doi: 10.34133/2022/9850305

  • Nikel, P.I., Benedetti, I., Wirth, N.T., de Lorenzo, V. and Calles, B. (2022) Standardization of regulatory nodes for engineering heterologous gene expression: a feasibility study. Microb Biotech Biotech doi: 10.1111/1751-7915.14063

  • Tellechea-Luzardo, J., Hobbs, L., Velázquez, E., Pelechova E., Woods, S., de Lorenzo, V. and Krasnogor, N. (2022) Versioning biological cells for trustworthy cell engineering. Nature Comms 13: 765. doi: 10.1038/s41467-022-28350-4

  • Collado-Vides, J., Gaudet, P and de Lorenzo, V. (2022) Missing links between gene functions and physiology in genomics. Front Physiol 13 doi: 10.3389/fphys.2022.815874

  • de Lorenzo, V. (2022) Environmental Galenics: large-scale fortification of extant microbiomes with engineered bioremediation agents. Phil Trans B Roy Soc  377 (1857),  20210395  doi: 10.1098/rstb.2021.0395
  • Aparicio, T., de Lorenzo, V., Martínez-García, E. (2022) High-Efficiency Multi-site Genomic Editing (HEMSE) Made Easy. Meth Mol Biol 2479: 37-52. doi: 10.1007/978-1-0716-2233-9_4

  • Velázquez, E., Álvarez, B., Fernández, L.A. and de Lorenzo, V. (2022) Hypermutation of specific genomic loci of Pseudomonas putida for continuous evolution of target genes. Microb Biotechnol  doi: 10.1111/1751-7915.14098

  • Nikel, P.I., Fuhrer, T., Chavarría, M., Sánchez-Pascuala, A., Sauer, U. and de Lorenzo, V. (2021) Reconfiguration of metabolic fluxes in Pseudomonas putida as a response to sub-lethal oxidative stress. ISME J. 15: 1751–1766 doi: 10.1038/s41396-020-00884-9

  • Kim, J., Goñi-Moreno, A., de Lorenzo, V. (2021) The subcellular architecture of the xyl gene expression flow of the TOL catabolic plasmid of Pseudomonas putida mt-2. mBio 12: e03685-20. doi: 10.1128/mBio.03685-20

  • de Lorenzo, V., Krasnogor, N. & Schmidt, M. For the sake of the Bioeconomy: define what a Synthetic Biology Chassis is! New Biotechnology 60, 44-51 (2021).

  • Arce-Rodríguez, A., Nikel, P.I., Calles, B., Chavarría, M., Platero R., Krell, T., de Lorenzo, V. (2021) Low CyaA expression and anti-cooperative binding of cAMP to CRP frames the scope the of the cognate regulon of Pseudomonas putida. Environ Microbiol 23: 1732–1749.   doi: 10.1111/1462-2920.15422

  •  Durante-Rodríguez, G., Páez-Espino, D and de Lorenzo, V. (2021) A bifan motif shaped by ArsR1, ArsR2 and their cognate promoters frames arsenic tolerance of Pseudomonas putida. Front Microbiol 12: 641440 doi 10.3389/fmicb.2021.641440

  • Pérez-Pantoja, D., Nikel, P.I., Chavarría, M. and de Lorenzo, V. (2021) Transcriptional control of 2,4 dinitrotoluene degradation in Burkholderia sp. R34 bears a regulatory patch that eases pathway evolution. Environ Microbiol 23: 2522–2531. doi: 10.1111/1462-2920.15472

  • Silbert, J., de Lorenzo, V. and Aparicio, T. (2021) Refactoring the conjugation machinery of promiscuous plasmid RP4 into a device for conversion of Gram-negative isolates to Hfr strains. ACS Synth Biol. 10: 690–697.   doi: 10.1021/acssynbio.0c00611

  • Dvořák, P., Alvarez-Carreño, C., Paradela, A. and de Lorenzo, V. (2021) An updated structural model of the A domain of the Pseudomonas putida XylR regulator poses an atypical interplay with aromatic effectors. Environ Biotech 23(8): 4418-4433 doi: 10.1111/1462-2920.15628

  • Schmidt, M. & Kubyshkin, V. How To Quantify a Genetic Firewall? A Polarity‐Based Metric for Genetic Code Engineering. ChemBioChem 22, 1268-1284 (2021).

  • Kim, J., Silva-Rocha, R. and de Lorenzo, V. (2021) Picking the right metaphors for addressing microbial systems: Economic theory helps understanding biological complexity. Int Microbiol. 24: 507-519 doi: 10.1007/s10123-021-00194-w 

  • Tas, H., Grozinger, L., Goni-Moreno, A., de Lorenzo, V. (2021) Automated design and implementation of a NOR gate in Pseudomonas putida. Synth Biol 6(1): ysab024  doi: 10.1093/synbio/ysab024

  • de Lorenzo, V., Krasnogor, N., Schmidt, M. (2021) For the sake of the Bioeconomy: define what a Synthetic Biology Chassis is! New Biotechnol 60: 44-51. doi: 10.1016/j.nbt.2020.08.004

  • Vornholt, T., F. Christoffel, M. M. Pellizzoni, S. Panke, T. R. Ward, M. Jeschek . “Systematic Engineering of Artificial Metalloenzymes for New-to-Nature Reactions” Science Adv., 2021, 7, eabe4208 https://doi.org/10.1126/sciadv.abe4208

  • Vornholt, T., Christoffel, F., Pellizoni, M. M., Panke, S., Ward, T. R., & M. Jeschek. 2021. Systematic engineering of artificial metalloenzymes for new-to-Nature reactions. Science Adv. 7:eabe4208. DOI: 10.1126/sciadv.abe4208

  • Hou, W., A. Bubliauskas, P. J. Kitson, J-P. Francoia, H. Powell-Davies, J. M. P. Gutierrez, P. Frei, J. S. Manzano, L. Cronin . ‘Automatic generation of 3D-printed reactionware for chemical synthesis digitization using ChemSCAD’, ACS Cent. Sci., 2021, 7, 212-218, https://doi.org/10.1021/acscentsci.0c01354.

  • Napiorkowska, M., Pestalozzi, L., Panke, S., Held, M., & S. Schmitt. 2021. High-throughput optimization of recombinant protein production in microfluidic gel beads. Small 17:2005523. DOI: 10.1002/smll.202005523

  • Arce-Rodríguez, A., Benedetti I., Borrero-de Acuña, J.M., Silva-Rocha, R., de Lorenzo, V. (2021) Standardization of inducer-activated broad host range expression modules: Debugging and refactoring an alkane-responsive AlkS/PalkB device. Synth Biol 6(1): ysab030. doi: 10.1093/synbio/ysab030

  • Al-ramahi, Y., Nyerges, A., Margolles, Y., Cerdán, L., Ferenc G., Pál, C., Fernández, L.A. and de Lorenzo, V. (2021) ssDNA recombineering boosts in vivo evolution of nanobodies displayed on bacterial surfaces. Comms Biology 4: 1169.  doi: 10.1038/s42003-021-02702-0

  • Velázquez, V., Al-Ramahi, Y., Tellechea-Luzardo, J., Krasnogor, N., de Lorenzo, V. (2021) Targetron-assisted delivery of exogenous DNA sequences into Pseudomonas putida through CRISPR-aided counterselection. ACS Synth Biol 10(10): 2552-2565 doi 10.1021/acssynbio.1c00199

  • Fraile S., Briones M., Revenga-Parra, M., de Lorenzo V., Lorenzo E. and Martínez-García E. (2021) Engineering tropism of Pseudomonas putida toward target surfaces through ectopic display of recombinant nanobodies. ACS Synth Biol 10: 2049–2059.  doi: 10.1021/acssynbio.1c00227

  • Algar, E., Al-Ramahi, Y., de Lorenzo, V. and Martínez-García, E. (2020) Environmental performance of Pseudomonas putida with a uracylated genome. ChemBioChem 21: 3255-3265 doi: 10.1002/cbic.202000330

  • Budisa, N., Kubyshkin, V. & Schmidt, M. Xenobiology: A Journey towards Parallel Life Forms. ChemBioChem 21, 2228-2231 (2020).

  • Vornholt, T. & M. Jeschek. 2020. The quest for xenobiotic enzymes: From new enzymes for chemistry to a novel chemistry of life. ChemBioChem 21:2241-2249. DOI: 10.1002/cbic.202000121.

  • Berdugo, M., Delgado-Baquerizo, M., Soliveres, S. Et al. 2020. Global ecosystem thresholds driven by aridity. Science, 367(6479), pp.787-790. https://www.science.org/doi/abs/10.1126/science.aay5958

  • Hoellerer, S., Papaxanthos, L., Gumpinger A. C., Fishcer, K., Beisel, C., Borgwardt, K., Benenson, Y., Jeschek, M. 2020. Large-scale DNA-based phenotypic recording and deep learning enable highly accurate sequence-function mapping. Nature Communications 11:3551. DOI:1038/s41467-020-17222-4

  • Conde-Pueyo, N., Vidiella, B., Sardanyés, J., Berdugo, M., Maestre, F.T., De Lorenzo, V. and Solé, R. 2020. Synthetic biology for terraformation lessons from mars, earth, and the microbiome. life, 10(2), p.14. https://www.mdpi.com/2075-1729/10/2/14

  • Ting, S.Y., Martinez-Garcia, E., Huang, S., Bertolli, S.K., Kelly, K.A., Cutler, K.J., Su, E.D., Zhi, H., Tang, Q., Radey, M.C., Raffatellu, M., Peterson, S.B., de Lorenzo, V. and Mougous, J.D. (2020) Targeted depletion of bacteria from mixed populations by programmable adhesion with antagonistic competitor cells. Cell Host Microb 28: 313-321.e6. doi: 10.1016/j.chom.2020.05.006

  • Vidiella, B., Sardanyés, J. and Solé, R.V. 2020. Synthetic soil crusts against green-desert transitions: a spatial model. Royal Society open science, 7(8), p.200161. https://royalsocietypublishing.org/doi/abs/10.1098/rsos.200161

  • Hueso-Gil, A., Calles, B., de Lorenzo, V. (2020) The Wsp intermembrane complex mediates metabolic control of the swim-attach decision of Pseudomonas putida. Env Microbiol 22: 3535-3547.  doi: 10.1111/1462-2920.15126

  • Schmidt, M. & Budisa, N. in 10th anniversary publication of the Bioart Society (eds. E. Berger, K. Mäki-Reinikka, K. O’Reilly & H. Sederholm) (Aalto ARTS Books, 2020).

  • Martínez-García, E., Fraile, S., Rodríguez-Espeso, R., Vecchietti, D., Bertoni, G., de Lorenzo, V. (2020) The naked bacterium: emerging properties of a surfome-streamlined Pseudomonas putida strain. ACS Synth Biol 9: 2477-2492 doi: 10.1021/acssynbio.0c00272

  • Espeso, D.R., Martínez-García, E., de Lorenzo, V. (2020) Quantitative assessment of morphological traits of planktonic bacterial aggregates. Water Res 188: 116468. doi:  10.1016/j.watres.2020.116468

  • Mougous, J., Peterson, S., Ting, S.Y., Martinez-García, E., de Lorenzo, V. (2020) Targeted depletion of bacteria from mixed populations through programmable cell-cell adhesion. Cell Host & Microbe 28: 313-321.e6 doi: 10.1016/j.chom.2020.05.006

  • Dvořák, P., Bayer, E.A., de Lorenzo, V. (2020) Surface display of designer protein scaffolds on genome-reduced strains of Pseudomonas putida. ACS Synth Biol 9: 2749–2764.  doi: 10.1021/acssynbio.0c00276

  • García-Martin, J.A., Chavarría, M., de Lorenzo, V. Pazos, F. (2020) Concomitant prediction of environmental fate and toxicity of chemical compounds. Biol Meth Protocols. 5: 1-10 bpaa025. doi: 10.1093/biomethods/bpaa025

  • Apura, R., de Lorenzo, V., Arraiano, C.M., Martínez-García, E. and Viegas S.C. (2020) Ribonucleases control distinct traits of Pseudomonas putida lifestyle. Environ Microbiol. 23: 174–189. doi: 10.1111/1462-2920.15291

  • Akkaya, Ö., Aparicio, T., Perez-Pantoja, D., de Lorenzo, V. (2020) The faulty SOS response of Pseudomonas putida KT2440 stems from an inefficient RecA-LexA interplay. Environ Microbiol. 23(3): 1608 -1619    doi: 10.1111/1462-2920.15384

  • Tas, H., Grozinger, L., Stoof, R., de Lorenzo, V, and Goni-Moreno, A. (2020) Contextual dependencies expand the re-usability of genetic inverters. Nature Comms 12: 355.  doi: 10.1038/s41467-020-20656-5

  • Espeso, D.R. Dvořák, P., Aparicio, T. de Lorenzo, V. (2020) An automated DIY framework for experimental evolution of Pseudomonas putida. Microb Biotechnol. 14(6): 2679-2685   doi: 10.1111/1751-7915.13678

  • Tas, H., Goni-Moreno, A. and de Lorenzo, V. (2020) A standardized inverter package borne by broad host range plasmids for genetic circuit design in Gram-negative bacteria. ACS Synth Biol 10: 213–21. doi:  10.1021/acssynbio.0c00529

  • Kim, J., Goñi-Moreno, A., Calles, B., and de Lorenzo, V. (2019). Spatial organization of the gene expression hardware in Pseudomonas putida. Environ Microbiol (In Press) doi: 10.1111/1462-2920.14544

  • Amann RI et al (2019) Toward unrestricted use of public genomic data. Science 363: 350-352. doi 10.1126/science.aaw1280

  • Schmidt M, Budisa N. 2019. Alternative Biofacts: Life as we don’t (yet) know it. Chapter in: Berger E, Mäki-Reinikka K, O’Reilly, K, Sederholm H. Finish Bioart Society – 10th anniversary publication. Aalto ARTS Books

  • Grégory Boël, G., Danot, O., de Lorenzo, V., Danchin, A.(2019) Omnipresent Maxwell’s demons orchestrate information management in living cells. Microb Biotech . 12 (2):210-242. doi: 10.1111/1751-7915.13378.

  • Aparicio, T., de Lorenzo V., Martínez-García, E.(2018) A broad host range plasmid-based roadmap for ssDNA-based recombineering in Gram-negative bacteria. Methods Mol Biol (In Press)

  • Aparicio, T., de Lorenzo V., Martínez-García, E.(2018) Improved thermotolerance of genome-reduced Pseudomonas putida EM42 enables effective functioning of the PL/cI857 system. Biotech J . 14(1):1800483 DOI: 10.1002/biot.201800483

  • de Lorenzo V., Couto, J.(2018) The important vs. the exciting: reining contradictions in contemporary biotechnology. Microb Biotech. 12(1): 32–34. doi: 10.1111/1751-7915.13348

  • Akkaya, Ö., Nikel, P.I., Pérez-Pantoja, D. and de Lorenzo, V.(2018) Evolving metabolism of 2,4-dinitrotoluene triggers SOS-independent diversification of host cells. Env Microbiol. 21(1):314-326 doi: 10.1111/1462-2920.14459.

  • Durante-Rodríguez, G., de Lorenzo, V. and Nikel, P.I. (2018) A post-translational metabolic switch enables complete decoupling of bacterial growth from biopolymer production in engineered Escherichia coli. ACS Synth Biol. 7(11):2686–2697  DOI 10.1021/acssynbio.8b00345

  • Pérez-Pantoja, D., Kim, J., Platero, R. and de Lorenzo, V. (2018) The interplay of EIIANtr with C-source regulation of the Pu promoter of Pseudomonas putida mt-2. Env Microbiol. 20(12):4555-4566. doi: 10.1111/1462-2920.14410.

  • Rodríguez Espeso, D., Martínez-García, E., Carpio, A., and de Lorenzo, V. (2018)Dynamics of Pseudomonas putida biofilms in an upscale experimental. framework. J Ind Microbiol Biotech. 45 (10):899–911 doi.org/10.1007/s10295-018-2070-0

  • Chavarría, M. and de Lorenzo, V. (2018) The imbroglio of the physiological Cra effector clarified at last. Mol Microbiol. 109(3):273-277. doi: 10.1111/mmi.14080.

  • de Lorenzo, V. (2018) Evolutionary tinkering vs. rational engineering in the times of Synthetic Biology. Life Sciences, Society & Policy 14(1):18. doi: 10.1186/s40504-018-0086-x

  • Akkaya, O., Pérez-Pantoja2, D., Calles, B., Nikel, P.I. and de Lorenzo, V.(2018) The metabolic redox regime of Pseudomonas putida tunes its evolvability towards novel xenobiotic substrates. mBio 9 (4):e01512-18 DOI: 10.1128/mBio.01512-18

  • Dvorak, P. and de Lorenzo, V. (2018). Refactoring the upper sugar metabolism of Pseudomonas putida for co-utilization of cellobiose, xylose, and glucose. Metab Eng. 48:e01512-18 94-108. doi: 10.1016/j.ymben.2018.05.019

  • O’Day, E., Hosta-Rigau, H., Oyarzún, D.A., Okano, H., de Lorenzo, V., von Kameke, C., Alsafar, H., Cao, C., Chen G.Q., Ji, W., Roberts R.J. Ronaghi, M., Yeung, K., Zhang, F. and Lee, S.Y. . (2018) Are we there yet? How and when specific biotechnologies will improve human health. Biotech J. 14(1):e1800195. doi: 10.1002/biot.201800195

  • Nikel P.I. and de Lorenzo V . (2018)Pseudomonas putida as a functional chassis for industrial biocatalysis: From native biochemistry to trans-metabolism. Metab Eng. 50:142-155. doi: 10.1016/j.ymben.2018.05.005

  • Sánchez-Pascuala, A., Nikel, P.I. and de Lorenzo, V. .(2018) Re-factoring glycolytic genes for targeted engineering of catabolism in Gram-negative bacteria. Methods Mol Biol. 772.(:3-24. doi: 10.1007/978-1-4939-7795-6_1.
  • Goñi-Moreno, A. and de Lorenzo, V. .(2018) Bio-algorithmic workflows for standardized synthetic biology constructs. Methods Mol Biol. 1772:363-372. doi: 10.1007/978-1-4939-7795-6_20.

  • de Lorenzo, V..(2018) Environmental microbiology to the rescue of planet Earth. Environ Microbiol. 20(6):1910-16 DOI: 10.1111/1462-2920.14105

  • Nikel, P.I. and de Lorenzo V. .(2018) Assessing carbon source-dependent phenotypic variability in Pseudomonas putida. Methods Mol Biol 1745:287-301. doi: 10.1007/978-1-4939-7680-5_16.

  • de Lorenzo, V., et al. (2018) The power of synthetic biology for bioproduction, remediation and pollution control. EMBO Reports 19:e45658. doi: 10.15252/embr.201745658.

  • Ricaurte DE, Martínez-García E, Nyerges Á, Pál C, de Lorenzo V, Aparicio T.A. (2018) A standardized workflow for surveying recombinases expands bacterial genome-editing capabilities. Microb Biotechnol. 11(1):176-188. doi: 10.1111/1751-7915.12846

  • Jonathan Grizou, Laurie J. Points, Abhishek Sharma and Leroy Cronin Discovery of Novelty in Robotically Constructed Self-Propelling Droplets Using a Curiosity Algorithm (submitted)

  • Andrew J. Surman, Marc Rodriguez Garcia, Yousef M. Abul-Haija, Geoffrey J. T. Cooper, Piotr S. Gromski, Rebecca Turk-MacLeod, Margaret Mullin, Cole Mathis, Sara I. Walker, and Leroy Cronin (2019). Environmental control programs the emergence of functional ensembles from unconstrained chemical reaction networks. Proc Natl Acad Sci.USA (In Press)
  • Soichiro Tsuda, Lewis A. Fraser, Salah Sharabi, Mohammed Hezwani, Andrew B. Kinghorn, Shaolin Liang, Gillian Douce, Julian A. Tanner and Leroy Cronin. A Portable 3D-printed Platform for Point-of-care Diagnosis of Clostridium difficile Infection and Malaria (submitted)

  • Solé RV, Montanez R, Duran-Nebreda S, Rodriguez-Amor D, Vidiella B, Sardanyés J. (2018) Population dynamics of synthetic Terraformation motifs. Royal Society open science. 25(7):180121. doi: 10.1098/rsos.180121

  • Vidiella B, Sardanyés J, Solé R. (2018) Exploiting delayed transitions to sustain semiarid ecosystems after catastrophic shifts. Journal of The Royal Society Interface. 15(143):20180083. doi.org/10.1098/rsif.2018.0083